Epigenetic and genetic determinants of resistance
oyster Crassostrea gigas : A case study in natural population
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/ I nt rOd UCtIOn e Resistance of oyster to POMS (Pacific oyster mortality syndrome; caused by OsHV-1 pvar virus) are associated with:
e Early transcriptomic response to the viral infection (de Lorgeril et al. 2018)
e Genetic basis of the resistance (Dégremont et al. 2015; Azéma et al. 2017)
e Some evidences support a role of the microbiota and the epigenetic (DNA methylation in CpG context)
as factors involved in resistance (Clerissi et al. 2020; Fallet et al. 2020)
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Here we propose to simultaneously study the potential role of genetics and epigenetics in the shaping of
resistant or susceptible phenotypes in natural populations.

Objectives X Hypothesis 1: Selective pressure is stronger in farming than in non-farming areas
X8 Hypothesis 2: Oyster resistance is partly genetically and epigenetically encoded
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Figure 2: Survival curve for the 248 samples after 14 days of experimental infection.

Figure 1: a) Sampling strategy of natural populations of the Pacific oyster (Crassostrea gigas) in the Rade of
Brest from: Farming areas, Red circle (high densities of oysters, presence of the virus OsHV-1 pVar and POMS)
and non-farming areas, Blue circles (low densities of oysters, undetectable virus and absence of POMS).
b) Injection in donor oyster with viral isolate from different location. ¢) Experimental infection in a randomized
complete block design. The six populations of oyster where equally divided into eight replicates. Infection was
induce by the cohabitation with infected donor oysters.

» Significant higher survival rates in framing than non-farming populations

» We sequenced 248 libraries prepared by exome capture “Seq Cap Epi Enrichment System”, to
get the genetic (SNPs) and epigenetic (DNA methylation) information..

/Genome / Epigenome wide association studies (GWAS / EWASN / Immune pathways involve in POMS resistance \
. I PTPN4 @
GWAS and EWAS were performed on 56,474 SNPs and 596,065 CpG sites, respectively. ___________ Corona ’/.
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Figure 4: Graph adapted from Green, et al. 2015, showing different innate
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» In GWAS analysis, only one (FDR threshold) SNP was significantly associated to resistance. This SNP was

located in the UBA2 gene, known to be involved in the antiviral pathway JAK/STAT.SNPs 5 activate involved in these pathways are encircled in red (EWAS analysis) and in blue (GWAS
» Other SNPs with suggestive threshold (0.005 P-value) were located in genes involved in TLR/NF-kB, analyses).
JAK/STAT, Apoptosis and Autophagy pathways.
. . A
Conclusion and perspectives
» Oyster populations from farming areas are more resistance to POMS comparing to the population from non-farming areas. This hypothesis is supported
by the fact that in non-farming area there is no POMS (or little POMS) and therefore no selective pressures rub off on oyster population.
» The first EWAS study associating DNA methylation to resistance to POMS.
\> Genetic and epigenetic mechanisms are likely to contribute to heritable variation in oyster resistance. y
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